

Case Study Examples Illustrating Modeling of PV for Distribution Planning and Analysis

Jeff Smith

Manager, Power System Studies, EPRI

Workshop on Achieving High Penetrations of PV

Orlando, Florida 9/14/2012

Industry Emphasis on Modeling – Why?

- Rapid-deployment of PV
- Higher penetration levels than ever before
- Utilities need to have a handle on potential PV impacts <u>prior</u> to interconnection
- Much easier to resolve potential issues <u>before</u> penetration levels exceed allowable limits
- Modeling enables the distribution planner to investigate solutions and "work arounds"

Example of an Existing PV System Causing Unacceptable Voltages

Measured Overvoltage Resulting from PV

Increasing PV Output →

Right Tool for the Job

Distributed PV Interconnection Analysis

Modeling is only as good as the tool used, and the data that goes into it

Feeder Modeling

Power Delivery

- Substation transformer
- Primary conductors
- Service transformers
- Customer service drops

Power Conversion

- Residential loads
- Commercial loads
- Existing PV systems

Power Control

- Capacitors
- Substation LTC
- Line regulators

Solar PV Modeling

OpenDSS PV Model

Allows for simulation of wide range of feeder impacts

- Steady-state load flow
 - Voltage regulation
 - Thermal loading
- Time series load flow
 - Interaction with regulation controls
- Short-circuit response
 - Increased fault duty
- Harmonics
 - THD calculations

Solar Resource Modeling - Variability

- Essential to capture time-varying nature of the solar PV
 - 15 minute Hourly energy related concerns such as peak demand, loading, overvoltage
 - < 1 minute voltage fluctuations, regulation control interaction
- Factors that contribute to variability
 - Size and layout of the solar facility
 - Local weather patterns
 - Centralized vs distributed
- Possible sources of data:
 - Location-specific measurement data
 - Proxy data from other PV systems
 - Mesoscale/satellite based models typically 30 minute - hourly interval

PV data "driving" the simulation must be sampled faster than the metric and/or control interaction being simulated

Example Ramp Rates from Existing PV

Solar Plant Size	Ramping (0-100%)
60 kW	< 10 seconds
800 kW	< 1 minute
6.5 MW	1.5-2 minutes
Feeder-wide	5-10 minutes

Feeder and PV Model Validation

Basic Analysis – Voltage Change Test

Static Load Flow

- solve load flow
- lock all controls
- add generation
- resolve

Considers Maximum Range of PV Output

3-Phase Voltage Profile Plot

3-Phase Voltage Profile Plot With 1600 kW Uniformly-Distributed Generation

Capacitors (•) Regulators (•)

Advanced Analysis – Time Series

Quasi-Dynamic, Quasi-Static, etc

Daily Voltage Profile 1.045 (Average Three Phase) With PV 1.04 voltage (pu) 1.035 1.03 Without PV 1.025 04 06 80 10 14 16 18 20 Hour

IEEE 8500 Node Test Case

Spatial- and Time-Based Modeling

Modeling Uncertainty Regarding Future PV Deployment Stochastic Analysis

- Can be used for determining a particular distribution feeder's hosting capacity for PV by considering large number of possible future PV deployments
- Must consider wide range of
 - potential spatial interconnections
 - PV system sizes
- Likelihood of a simulated PV deployment resembling the actual future deployment increases with number of cases considered

Sample Stochastic Results Maximum Feeder Voltage

Blue – primary feeder voltage

Red – secondary customer voltage

- Each point represents the worst-case voltage violation for a single PV deployment case
- •5000 cases shown

What About Evaluating Smart Inverters?

Smart inverters for providing grid support functions

Volt-Var w/ Hysteresis**

*Currently in OpenDSS
**available in OpenDSS Q1 2013

Volt-Watt Control**

Dynamic Var Control**

Applying PV Volt-Var Control

Mitigating Voltage Issues

Open Discussions

Contact:

Jeff Smith
Manager, Power System Studies
EPRI
jsmith@epri.com

Simulation Platform – OpenDSS

- Open source of EPRI's Distribution System Simulator
 - developed in 1997
 - open sourced in 2008 to collaborate with other research projects
- Used in 100's of distribution studies
- OpenDSS designed from the beginning to capture
 - Time-specific impacts and
 - Location-specific impacts
- Differentiating features
 - full multiphase model
 - numerous solution modes
 - "dynamic" power flow
 - system controls
 - flexible load models

- Needed for analysis of
 - DG/renewables
 - energy efficiency
 - PHEV/EV
 - non-typical loadshapes

